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6.0  What We Need to Know When We Finish This Chapter

This chapter reviews the topics of confidence intervals and hypothesis tests. 
Confidence intervals give us ranges that contain the parameters with prespec-
ified degrees of certainty. They are more useful if they are narrower. Hypoth-
esis tests evaluate whether the data at hand are consistent or inconsistent with 
prespecified beliefs about parameter values. They are more useful if they are 
unlikely to contradict these beliefs when the beliefs are really true, and if they 
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are unlikely to be consistent with these beliefs when the beliefs are really 
false. Here are the essentials.

1.	 Equation (6.7), section 6.2: The fundamental equation of this 
chapter is

1 2 2− = − ≤ −
( ) ≤











α δ

α αP
SD

t
d

d
tdf df

/
( )

/
( ) .

2.	 Equation (6.8), section 6.3: Confidence intervals consist of known 
boundaries with a fixed probability of containing the unknown value 
of the parameter of interest. The general expression is
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	 Confidence intervals ask the data for instruction.

3.	 Section 6.4: Hypothesis tests ask the data for validation. The null 
hypothesis is the opposite of what we expect to find. Estimates in the 
acceptance region validate the null hypothesis. Estimates in the rejec-
tion region contradict it.

4.	 Equation (6.14), section 6.4.1: The two-sided hypothesis test is
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5.	 Section 6.4.1: Reject the null hypothesis when the estimate falls in the 
rejection region, the test statistic is greater than or equal to the criti-
cal value, or the p-value is less than or equal to the significance level. 
These decision rules are all equivalent.

6.	 Equation (6.30), section 6.4.2: The one-sided, upper-tailed hypoth-
esis test is

1 0− = < + ( )( )α δ αP SDd t ddf( ) .

7.	 Section 6.4.3: The size of the test is its significance level, the prob-
ability of a Type I error. A Type I error occurs when the null hypoth-
esis is rejected even though it is true. It is the statistical equivalent of 
convicting an innocent person.

8.	 Equation (6.36), section 6.4.3: A Type II error occurs when the 
null hypothesis is accepted even though it is false. It is the statistical 
equivalent of acquitting a guilty person. The power of the test is the 
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probability of rejecting the null hypothesis when it is false, or one 
minus the probability of a Type II error.
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9.	 Section 6.4.3: All else equal, reducing the probability of either a 
Type I or a Type II error increases the probability of the other.

10.	 Section 6.4.3: Statistical distance is what matters, not algebraic dis-
tance. The standard deviation of the estimator is the metric for the 
statistical distance.

11.	 Section 6.5: Any value within the confidence interval constructed at 
the (1 − α)% confidence level would, if chosen as the null hypothesis, 
not be rejected by a two-sided hypothesis test at the α% significance 
level.

6.1  Introduction

Chapter 5 demonstrated that, with the appropriate assumptions regarding the 
disturbances, ordinary least squares (OLS) estimates of β and α are better 
than any other convenient estimator. This is certainly nice to know. However, 
all it really says is that any other estimator we might think of would tell us less 
about β and α. The question of how much b and a actually tell us about these 
two parameters remains. This is the question of inference.

At the moment, all we really know about β and α is based on the expected 
values and variances of b and a. Because E(b) = β and E(a) = α, the two 
sample statistics are unbiased estimators for their respective parameters. This 
means that collections of values for b and a, where each pair was calculated 
from an independent sample, would tend to cluster around the true values of 
β and α. Because b and a are best linear unbiased (BLU) estimators, these 
clusters would be tighter than they would be for any other linear unbiased 
estimators of β and α.

Apart from in this textbook, however, we’re rarely in a position to examine 
multiple independent values of the same estimator. If we want to know more 
about β and α, we have to see if there is more that we can make of the one set 
of estimators we’re likely to have.
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